Advertisements
Advertisements
प्रश्न
If ax² + bx + c is divided by x + 3, x – 5, and x – 1, the remainders are 21, 61 and 9 respectively. Find a, b and c. (Use Gaussian elimination method.)
उत्तर
P(x) = ax2 + bx + c.
When P(x) is divided by x + 3, x – 5 and x – 1.
The remainders are respectively P(– 3), P(5) and P(1).
We are given that P(– 3) = 21
P(5) = 61
P(1) = 9
Now P(– 3) = 21
⇒ a(– 3)2 + b(– 3) + c = 21
⇒ 9a – 3b + c = 21 ........(1)
P(5) = 61
⇒ a(5)2 + b(5) + c = 61
⇒ 25a + 5b + c = 61 .......(2)
P(1) = 9
⇒ a(1)2 + b(1) + c = 9
⇒ a + b + c = 9 .......(3)
Now the matrix form of the above three equations is
`[(9, -3, 1),(25, 5, 1),(1, 1, 1)] [("a"),("b"),("C")] = [(21),(61),(9)]`
(i.e) AX = B
The augmented matrix (A, B) is
[A, B] = `[(9, -3, 1, 21),(25, 5, 1, 61),(1, 1, 1, 9)]`
`˜ [(1, 1, 1, 9),(25, 5, 1, 61),(9, -3, 1, 21)] "R"_1 ↔ "R"_3`
`[(1, 1, 1, 9),(25, 5, 1, 61),(9, -3, 1, 21)] ˜ [(1, 1, 1, 9),(0, -20, -24, -164),(0, -12, -8, -60)] {:("R"_2 -> "R"_2 - 25"R"_1),("R"_3 -> "R"_3 - 9"R"_1):}`
`˜ [(1, 1, 1, 9),(0, -20, -24, -164),(0, 12, 8, 60)] "R"_3 -> - "R"_3`
`˜ [(1, 1, 1, 9),(0, -20, -24, -164),(0, 0, -32, -192)] "R"_3 -> - 5"R"_3 + 3"R"_2`
The above matrix is in echelon form now writing the equivalent equations.
`[(1, 1, 1),(0, -20, -24),(0, 0, -32)][("a"),("b"),("c")] = [(9),(-164),(-192)]`
(i.e) a + b + c = 9
– 20b – 24c = – 164
– 32c = – 192
From (3)
⇒ c = `(- 192)/(- 32)` = 6
Substituting c = 6 in (2) we get
– 20b – 24(6) = – 164
⇒ – 20b = – 164 + 144 = – 20
⇒ b = 1
Substituting c = 6, b = 1 in (1) we get
a + 1 + 6 = 9
⇒ a = 9 – 7 = 2
So a = 2, b = 1, c = 6
APPEARS IN
संबंधित प्रश्न
Solve the following system of linear equations by matrix inversion method:
2x – y = 8, 3x + 2y = – 2
Solve the following system of linear equations by matrix inversion method:
2x + 3y – z = 9, x + y + z = 9, 3x – y – z = – 1
Solve the following system of linear equations by matrix inversion method:
x + y + z – 2 = 0, 6x – 4y + 5z – 31 = 0, 5x + 2y + 2z = 13
If A = `[(-5, 1, 3),(7, 1, -5),(1, -1, 1)]` and B = `[(1, 1, 2),(3, 2, 1),(2, 1, 3)]`, Find the products AB and BA and hence solve the system of equations x + y + 2z = 1, 3x + 2y + z = 7, 2x + y + 3z = 2
Four men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women can finish the same work jointly in 4 days. Find the time taken by one man alone and that of one woman alone to finish the same work by using matrix inversion method
Solve the following systems of linear equations by Cramer’s rule:
5x – 2y + 16 = 0, x + 3y – 7 = 0
Solve the following systems of linear equations by Cramer’s rule:
`3/2 + 2y = 12, 2/x + 3y` = 13
Solve the following systems of linear equations by Cramer’s rule:
`3/x - 4/y - 2/z - 1` = 0, `1/x + 2/y + 1/z - 2` = 0, `2/x - 5/y - 4/z + 1` = 0
A chemist has one solution which is 50% acid and another solution which is 25% acid. How much each should be mixed to make 10 litres of a 40% acid solution? (Use Cramer’s rule to solve the problem).
Solve the following systems of linear equations by Gaussian elimination method:
2x + 4y + 6z = 22, 3x + 8y + 5z = 27, – x + y + 2z = 2
A boy is walking along the path y = ax2 + bx + c through the points (– 6, 8), (– 2, – 12), and (3, 8). He wants to meet his friend at P(7, 60). Will he meet his friend? (Use Gaussian elimination method.)
Choose the correct alternative:
If `("AB")^-1 = [(12, -17),(-19, 27)]` and `"A"^-1 = [(1, -1),(-2, 3)]` then `"B"^-1` =
Choose the correct alternative:
If A = `[(1, tan theta/2),(- tan theta/2, 1)]` and AB = I2, then B =
Choose the correct alternative:
If A = `[(costheta, sintheta),(-sintheta, costheta)]` and A(adj A) = `[("k", 0),(0, "k")]`, then k =
Choose the correct alternative:
If adj A = `[(2, 3),(4, 1)]` and adj B = `[(1, -2),(-3, 1)]` then adj (AB) is
Choose the correct alternative:
If ρ(A) ρ([A|B]), then the system AX = B of linear equations is
Choose the correct alternative:
If 0 ≤ θ ≤ π and the system of equations x + (sin θ)y – (cos θ)z = 0, (cos θ) x – y + z = 0, (sin θ) x + y + z = 0 has a non-trivial solution then θ is
Choose the correct alternative:
Let A = `[(2, -1, 1),(-1, 2, -1),(1, -1, 2)]` and 4B = `[(3, 1, -1),(1, 3, x),(-1, 1, 3)]`. If B is the inverse of A, then the value of x is