Advertisements
Advertisements
प्रश्न
If b = `(3 + cot π/8 + cot (11π)/24 - cot (5π)/24)`, then the value of `|bsqrt(2)|` is ______.
विकल्प
6.00
7.00
8.00
9.00
MCQ
रिक्त स्थान भरें
उत्तर
If b = `(3 + cot π/8 + cot (11π)/24 - cot (5π)/24)`, then the value of `|bsqrt(2)|` is 6.00.
Explanation:
Let `π/24` = θ
⇒ `π/8` = 3θ, 8θ = `π/3`,
Given expression cot written as 3 + cot3θ + cot11θ – cot5θ
= `3 + cot3θ + cot(π/3 + 3θ) + (3θ (-π)/3)`
= 3 + 3cot(9θ)
= `3 + 3cot((3π)/8)`
= `3sqrt(2)`
∴ `|bsqrt(2)|` = 6 ...(Formula: cotA + cot(A + 60°) + cot(A – 60°) = 3cot3A)
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?