Advertisements
Advertisements
प्रश्न
If \[\left| \vec{a} \right| = a \text{ and } \left| \vec{b} \right| = b,\] prove that \[\left( \frac{\vec{a}}{a^2} - \frac{\vec{b}}{b^2} \right)^2 = \left( \frac{\vec{a} - \vec{b}}{ab} \right)^2 .\]
उत्तर
\[\left( \frac{\vec{a}}{a^2} - \frac{\vec{b}}{b^2} \right)^2 \]
\[ = \left| \frac{\vec{a}}{a^2} \right|^2 + \left| \frac{\vec{b}}{b^2} \right|^2 - \frac{2 \vec{a} . \vec{b}}{a^2 b^2}\]
\[ = \frac{\left| \vec{a} \right|^2}{a^4} + \frac{\left| \vec{b} \right|^2}{b^4} - \frac{2 \vec{a} . \vec{b}}{a^2 b^2}\]
\[ = \frac{a^2}{a^4} + \frac{b^2}{b^4} - \frac{2 \vec{a} . \vec{b}}{a^2 b^2}...................(\text{ From the given information })\]
\[ = \frac{1}{a^2} + \frac{1}{b^2} - \frac{2 \vec{a} . \vec{b}}{a^2 b^2}\]
\[ = \frac{b^2 + a^2 - 2 \vec{a} . \vec{b}}{a^2 b^2}\]
\[ = \frac{a^2 + b^2 - 2 \vec{a} . \vec{b}}{a^2 b^2}\]
\[ = \frac{\left| \vec{a} \right|^2 + \left| \vec{a} \right|^2 - 2 \vec{a} . \vec{b}}{a^2 b^2}.................(\text{ From the given information })\]
\[ = \frac{\left( \vec{a} - \vec{b} \right)^2}{a^2 b^2}\]
\[ = \left( \frac{\vec{a} - \vec{b}}{ab} \right)^2\]
APPEARS IN
संबंधित प्रश्न
Write two different vectors having same direction.
The value of is `hati.(hatj xx hatk)+hatj.(hatixxhatk)+hatk.(hatixxhatj)` is ______.
If θ is the angle between any two vectors `veca` and `vecb,` then `|veca.vecb| = |veca xx vecb|` when θ is equal to ______.
Find the projection of \[\vec{b} + \vec{c} \text { on }\vec{a}\] where \[\vec{a} = 2 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} + 2 \hat{j} - 2 \hat{k} \text{ and } \vec{c} = 2 \hat{i} - \hat{j} + 4 \hat{k} .\]
Find \[\left| \vec{a} \right| \text{ and } \left| \vec{b} \right|\] if
\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 12 \text{ and } \left| \vec{a} \right| = 2\left| \vec{b} \right|\]
Find \[\left| \vec{a} \right| \text{ and } \left| \vec{b} \right|\] if
\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 8 \text{ and } \left| \vec{a} \right| = 8\left| \vec{b} \right|\]
Find \[\left| \vec{a} \right| and \left| \vec{b} \right|\] if
\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 3\text{ and } \left| \vec{a} \right| = 2\left| \vec{b} \right|\]
Find \[\left| \vec{a} - \vec{b} \right|\] if
\[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 5 \text{ and } \vec{a} \cdot \vec{b} = 8\]
Find \[\left| \vec{a} - \vec{b} \right|\] if
\[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 4\]
Find the angle between two vectors \[\vec{a} \text{ and } \vec{b}\]
\[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 1\]
Express the vector \[\vec{a} = 5 \text{i} - 2 \text{j} + 5 \text{k}\] as the sum of two vectors such that one is parallel to the vector \[\vec{b} = 3 \text{i} + \text{k}\] and other is perpendicular to \[\vec{b}\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors of the same magnitude inclined at an angle of 30°, such that \[\vec{a} \cdot \vec{b} = 3, \text{ find } \left| \vec{a} \right|, \left| \vec{b} \right| .\]
Decompose the vector \[6 \hat{i} - 3 \hat{j} - 6 \hat{k}\] into vectors which are parallel and perpendicular to the vector \[\hat{i} + \hat{j} + \hat{k} .\]
If \[\vec{c}\] s perpendicular to both \[\vec{a} \text{ and } \vec{b}\] then prove that it is perpendicular to both \[\vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b}\]
If \[\vec{a,} \vec{b,} \vec{c}\] are three non-coplanar vectors, such that \[\vec{d} \cdot \vec{a} = \vec{d} \cdot \vec{b} = \vec{d} \cdot \vec{c} = 0,\] then show that \[\vec{d}\] is the null vector.
If a vector \[\vec{a}\] is perpendicular to two non-collinear vectors \[\vec{b} \text{ and } \vec{c} , \text{ then show that } \vec{a}\] is perpendicular to every vector in the plane of \[\vec{b} \text{ and } \vec{c} .\]
If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} ,\] show that the angle θ between the vectors \[\vec{b} \text{ and } \vec{c}\] is given by \[\frac{\left| \vec{a} \right|^2 - \left| \vec{b} \right|^2 - \left| \vec{c} \right|^2}{2\left| \vec{b} \right| \left| \vec{c} \right|} .\]
Let \[\vec{u,} \vec{v} \text{ and } \vec{w}\] be vectors such \[\vec{u} + \vec{v} + \vec{w} = \vec{0} .\] If \[\left| \vec{u} \right| = 3, \left| \vec{v} \right| = 4 \text{ and } \left| \vec{w} \right| = 5,\] then find \[\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u} .\]
Find the values of x and y if the vectors \[\vec{a} = 3 \hat{i} + x \hat{j} - \hat{k} \text{ and } \vec{b} = 2 \hat{i} + \hat{j} + y \hat{k}\] are mutually perpendicular vectors of equal magnitude.
If \[\vec{a}\] \[\vec{b}\] are two vectors such that \[\left| \vec{a} + \vec{b} \right| = \left| \vec{b} \right|\] then prove that \[\vec{a} + 2 \vec{b}\] is perpendicular to \[\vec{a}\]
If `|vec"a"| = 4, |vec"b"| = 3` and `vec"a".vec"b" = 6 sqrt(3)`, then find the value of `|vec"a" xx vec"b"|`.
Which of the following is magnitude of vectors. `veca = hati + hatj + hatk`
What is the product of `(3veca * 5vecb) * (2veca + 7vecb)`
What are the values of x for which the angle between the vectors? `2x^2hati + 3xhatj + hatk` and `hati - 2hatj + x^2hatk` is obtuse?