हिंदी

If cos 2B = cos(A+C)cos(A-C), then tan A, tan B, tan C are in ______. -

Advertisements
Advertisements

प्रश्न

If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in ______.

विकल्प

  • AP

  • GP

  • HP

  • None of these

MCQ
रिक्त स्थान भरें

उत्तर

If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in GP.

Explanation:

cos 2B = `(cos(A + C))/(cos(A - C))`

= `(cos A cos C - sin A sin C)/(cos A cos C + sin A sin C)`

`\implies (1 - tan^2 B)/(1 + tan^2 B) = (1 - tan A tan C)/(1 + tan A tan C)`

`\implies` 1 + tan2 B – tan A tan C – tan A tan C tan2 B

= 1 – tan2 B + tan A tan C – tan A tan C tan2 B

`\implies` 2 tan2 B = 2 tan A tan C

`\implies` tan2 B = tan A tan C

Hence, tan A, tan B and tan C will be in GP.

shaalaa.com
Trigonometric Functions of Sum and Difference of Angles
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×