Advertisements
Advertisements
प्रश्न
If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in ______.
विकल्प
AP
GP
HP
None of these
MCQ
रिक्त स्थान भरें
उत्तर
If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in GP.
Explanation:
cos 2B = `(cos(A + C))/(cos(A - C))`
= `(cos A cos C - sin A sin C)/(cos A cos C + sin A sin C)`
`\implies (1 - tan^2 B)/(1 + tan^2 B) = (1 - tan A tan C)/(1 + tan A tan C)`
`\implies` 1 + tan2 B – tan A tan C – tan A tan C tan2 B
= 1 – tan2 B + tan A tan C – tan A tan C tan2 B
`\implies` 2 tan2 B = 2 tan A tan C
`\implies` tan2 B = tan A tan C
Hence, tan A, tan B and tan C will be in GP.
shaalaa.com
Trigonometric Functions of Sum and Difference of Angles
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?