Advertisements
Advertisements
प्रश्न
If cos θ = `- sqrt(3)/2` and sin α = `-3/5`, where θ does not and α lies in the third quadrant, then `(2 tan α + sqrt(3) tan θ)/(cot^2 θ + cos alpha)` is equal to ______.
विकल्प
`7/22`
`5/22`
`9/22`
`22/5`
MCQ
रिक्त स्थान भरें
उत्तर
If cos θ = `- sqrt(3)/2` and sin α = `-3/5`, where θ does not and α lies in the third quadrant, then `(2 tan α + sqrt(3) tan θ)/(cot^2 θ + cos alpha)` is equal to `underlinebb(5/22)`.
Explanation:
Given, cos θ = `-sqrt(3)/2 < 0` and θ does not lie in III quadrant.
∴ θ must be lying in II quadrant.
`\implies` tan θ = `-1/sqrt(3)` and cot θ = `-sqrt(3)` ...(i)
Since, α lies in III quadrant and sin α = `-3/5`
∴ tan α = `3/4` and cos α = `-4/5` ...(ii)
Now, `(2tanα + sqrt(3) tan θ)/(cot^2θ + cos α)`
= `(2. 3/4 - sqrt(3). 1/sqrt(3))/(3 - 4/5)`
= `5/22`
shaalaa.com
Trigonometric Functions of Allied Angels
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?