Advertisements
Advertisements
प्रश्न
If cosec θ – sin θ = a3 and sec θ – cos θ = b3, then prove that a2b2 (a2 + b2) = 1
उत्तर
cosec θ – sin θ = a3
⇒ `1/sintheta - sintheta` = a3
(i.e) `(1 - sin^2theta)/sintheta` = a3
⇒ a3 = `(cos^2theta)/sintheta`
⇒ a = `((costheta)^(2/3))/((sintheta)^(1/3))`
Similary, sec θ – cos θ = b3
⇒ `1/costheta - costheta` = b3
`(1 - cos^2theta)/costheta` = b3
⇒ `(sin^2theta)/costheta` = b3
⇒ b = `((sintheta)^(2/3))/((costheta)^(1/3))`
Now a3 = `(cos^2theta)/sintheta`
b3 = `(sin^2theta)/costheta`
∴ a3b3 = `(cos^2theta)/sintheta * (sin^2theta)/costheta`
= sinθ cosθ
⇒ ab = `(sintheta costheta)^(1/3)`
= `sin^(2/3)theta cos^(2/3)theta`
To prove a2b2(a2 + b2) = 1
a2 + b2 = `{[((costheta)^(2/3))/((sintheta)^(1/3))]^2 + [((sintheta)^(2/3))/((costheta)^(1/3))]^2}`
= `((costheta)^(4/3))/((sintheta)^(2/3)) + ((sintheta)^(4/3))/((costheta)^(2/3))`
= `(cos^2theta + sin^2theta)/((sinthetacostheta)^(2/3))`
= `1/((sinthetacostheta)^(2/3))`
L.H.S = a2b2(a2 + b2)
= `(sintheta costheta)^(2/3) xx 1/((sintheta costheta)^(2/3))`
= 1
= R.H.S
APPEARS IN
संबंधित प्रश्न
Identify the quadrant in which an angle given measure lies
25°
Identify the quadrant in which an angle given measure lies
825°
Identify the quadrant in which an angle given measure lies
– 55°
Identify the quadrant in which an angle given measure lies
328°
Identify the quadrant in which an angle given measure lies
– 230°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
395°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
525°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
– 270°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
– 450°
If a cos θ − b sin θ = c, show that a sin θ + b cos θ = `+- sqrt("a"^2 + "b"^2 - "c"^2)`
If sin θ + cos θ = m, show that cos6θ + sin6θ = `(4 - 3("m"^2 - 1)^2)/4`, where m2 ≤ 2
If `(cos^4α)/(cos^2β) + (sin^4α)/(sin^2β)` = 1, prove that sin4α + sin4β = 2 sin2α sin2β
If y = `(2sinalpha)/(1 + cosalpha + sinalpha)`, then prove that `(1 - cosalpha + sinalpha)/(1 + sinalpha)` = y
If sec θ + tan θ = p, obtain the values of sec θ, tan θ and sin θ in terms of p
If cot θ(1 + sin θ) = 4m and cot θ(1 – sin θ) = 4n then prove that (m2 – n2)2 = m
Choose the correct alternative:
Which of the following is not true?