हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

If cosec θ – sin θ = a3 and sec θ – cos θ = b3, then prove that a2b2 (a2 + b2) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

If cosec θ – sin θ = a3 and sec θ – cos θ = b3, then prove that a2b2 (a2 + b2) = 1

योग

उत्तर

cosec θ – sin θ = a3 

⇒ `1/sintheta - sintheta` = a3 

(i.e) `(1 - sin^2theta)/sintheta` = a3 

⇒ a3 = `(cos^2theta)/sintheta`

⇒ a = `((costheta)^(2/3))/((sintheta)^(1/3))`

Similary, sec θ – cos θ = b3 

⇒ `1/costheta - costheta` = b3 

`(1 - cos^2theta)/costheta` = b3 

⇒ `(sin^2theta)/costheta` = b3 

⇒ b = `((sintheta)^(2/3))/((costheta)^(1/3))`

Now a3 = `(cos^2theta)/sintheta`

b3 = `(sin^2theta)/costheta`

∴ a3b3 = `(cos^2theta)/sintheta * (sin^2theta)/costheta`

= sinθ cosθ
⇒ ab = `(sintheta costheta)^(1/3)`

= `sin^(2/3)theta cos^(2/3)theta`

To prove a2b2(a2 + b2) = 1

a2 + b2 = `{[((costheta)^(2/3))/((sintheta)^(1/3))]^2 + [((sintheta)^(2/3))/((costheta)^(1/3))]^2}`

= `((costheta)^(4/3))/((sintheta)^(2/3)) + ((sintheta)^(4/3))/((costheta)^(2/3))`

= `(cos^2theta + sin^2theta)/((sinthetacostheta)^(2/3))`

= `1/((sinthetacostheta)^(2/3))`

L.H.S = a2b2(a2 + b2)

= `(sintheta costheta)^(2/3) xx 1/((sintheta costheta)^(2/3))`

= 1

= R.H.S

shaalaa.com
A Recall of Basic Results
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - Exercise 3.1 [पृष्ठ ९२]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 3 Trigonometry
Exercise 3.1 | Q 11 | पृष्ठ ९२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×