हिंदी

If the Equation `4x^2-3kx+1=0` Has Equal Roots Then Value of K=? (A)`+-2/3` (B)`+-1/3` (C)` +-3/4` (D) `+-4/3` - Mathematics

Advertisements
Advertisements

प्रश्न

If the equation `4x^2-3kx+1=0` has equal roots then value of k=?  

(a)`+-2/3`                     (b)`+-1/3` 

(c)` +-3/4`                     (d) `+-4/3` 

 

उत्तर

(d) `+-4/3` 

It is given that the roots of the equation `4x^2-3kx+1=0`  are equal. 

∴` (b^2-4ac)=0` 

⇒` (3k)^2-4xx4xx1=0` 

⇒`9k^2=16` 

⇒`k^2=16/9` 

⇒ `k=+-4/3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Quadratic Equations - Exercises 6

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 10 Quadratic Equations
Exercises 6 | Q 19

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

 

(a) `3x-x^2=x^2+5`                    (b) `(x+2)^2=2(x^2-5)` 

(c) `(sqrt2x+3)^2=2x^2+6`        (d)` (x-1)^2=3x^2+x-2`


The sum of a number and its reciprocal is `2 1/20` The number is  

(a) `5/4  or  4/5`                        (b)`4/3  or  3/4` 

(c) `5/6  or  6/5`                         (d) `1/6  or  6`


Find the roots of the quadratic equation `2x^2-x-6=0` 

 


If 1 is a root of the equation `ay^2+ay+3=0`  and `y^2+y+b=0` then find the value of ab.  


If the roots of the quadratic equation `px(x-2)+=0` are equal, find the value of p. 


Find the value of k for which the quadratic equation `9x^2-3kx+k=0` has equal roots. 

 


Suyash scored 10 marks more in second test than that in the first. 5 times the score of the second test is the same as square of the score in the first test. Find his score in the first test.


Choose the correct answer for the following question.

The roots of x2 + kx + k = 0 are real and equal, find k.


Choose the correct answer for the following question.

Out of the following equations, find the equation having the sum of its roots –5.


In the adjoining fig. `square` ABCD is a trapezium AB || CD and its area is 33 cm2. From the information given in the figure find the lengths of all sides of the `square` ABCD. Fill in the empty boxes to get the solution.

Solution: `square` ABCD is a trapezium.

AB || CD

`"A"(square "ABCD") = 1/2 ("AB" + "CD") xx`______

33 = `1/2 ("x" + 2"x" + 1) xx `______

∴ ______ = (3x + 1) × ______

∴ 3x2 +______ − ______ = 0

∴ 3x(______) + 10(______) = 0

∴ (3x + 10) (______) = 0

∴ (3x + 10) = 0 or ______ = 0

∴ x = `-10/3` or x = ______

But length is never negative.

∴ `"x" ≠ -10/3`

∴ x = ______

AB = ______, CD = ______, AD = BC = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×