Advertisements
Advertisements
प्रश्न
If f(x) is continuous at x = 3, where
f(x) = ax + 1, for x ≤ 3
= bx + 3, for x > 3 then.
विकल्प
`"a + b" = (-2)/3`
`"a - b" = (-2)/3`
`"a - b" = 2/3`
`"a + b" = 2/3`
MCQ
उत्तर
`"a - b" = 2/3`
Explanation:
We have, f(x) is continuous at x = 3
where f(x) = `{("a"x + 1 "for" x ≤ 3),("b"x + 3 "for" x > 3):},`
`therefore lim_(x->3^-) "f"(x) = lim_(x->3^+)`f(x) = f(3) .....(i)
Now, `lim_(x->3^-) "f"(x) = lim_("h" -> 0) "f"(3 - "h")`
`lim_("h" -> 0) "a"(3 - "h") + 1`
= 3a + 1 ....(ii)
`lim_(x->3^+) "f"(x) = lim_("h" -> 0) "f"(3 + "h")`
`lim_("h" -> 0) "b"(3 - "h") + 3`
= 3b + 3 ....(iii)
and f(3) = 3a + 1 ....(iv)
Since, f(x) is continuous at x = 3
∴ From Eqs. (i), (ii), (iii) and (iv)
we get 3a + 1 = 3b + 3
⇒ 3a - 3b = 2
⇒ a - b = `2/3`
shaalaa.com
Continuous and Discontinuous Functions
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?