Advertisements
Advertisements
प्रश्न
If f(x) is continuous over [- π, π], where f(x) is defined as
f(x) = `{(- 2 sin x "," - pi ≤ x ≤ (-pi)/2),(alpha sin x + beta"," - pi/2 < x < pi/2),(cos x "," pi/2 ≤ x ≤ pi):}` then α and β equals
विकल्प
α = - 1, β = 1
α = 1, β = - 1
α = 1, β = 1
α = β = 0
उत्तर
α = - 1, β = 1
Explanation:
Since, f(x) is continuous over [- π, π].
∴ It ts continuous at x = `- pi/2 and x = pi/2`.
∴ `lim_(x -> (-pi^-)/2) "f"(x) = lim_(x -> (-pi^+)/2) "f"(x)`
⇒ `lim_(x -> (-pi)/2) (- 2 sin x) = lim_(x -> (-pi)/2) (alpha sin x + beta)`
⇒ - 2(- 1) = α(- 1) + β
⇒ - α + β = 2 ...(i)
Also, `lim_(x -> (-pi^-)/2) "f"(x) = lim_(x -> (-pi^+)/2) "f"(x)`
⇒ `lim_(x -> (pi)/2) (alpha sin x + beta) = lim_(x -> (pi)/2) (cos x)`
⇒ α(1) + β = 0
⇒ α + β = 0 ....(ii)
From (i) and (ii), we get
α = - 1, β = 1