Advertisements
Advertisements
प्रश्न
If f(x) = k, where k is constant, then `int "k" "d"x` = 0
विकल्प
True
False
उत्तर
This statement is False.
APPEARS IN
संबंधित प्रश्न
Choose the correct alternative:
The value of `int ("d"x)/sqrt(1 - x)` is
Choose the correct alternative:
`int(("e"^(2x) + "e"^(-2x))/"e"^x) "d"x` =
`int 5^(6x + 9) "d"x` = ______ + c
State whether the following statement is True or False:
If f'(x) = 3x2 + 2x, then by definition of integration, we get f(x) = x3 + x2 + c
Evaluate `int1/(x(x-1)) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int(5x^2 - 6x+3)/(2x- 3 )dx`
If f' (x) = 4x3 - 3x2 + 2x + k, f(O) = 1 and f(1) = finf (x).
If f'(x) - 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int x sqrt(1+x^2) dx`
Evaluate `int 1 / (x (x - 1)) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate.
`intx^3/sqrt(1+x^4) dx`
Evaluate.
`int x^3e^(x^2)dx`
Evaluate `int1/(x(x - 1)) dx`