हिंदी

If f(x) = log (sin x), x ∈ ππ[π6,5π6], then value of 'c' by applying LMVT is ____________. -

Advertisements
Advertisements

प्रश्न

If f(x) = log (sin x), x ∈ `[π/6, (5π)/6]`, then value of 'c' by applying LMVT is ____________.

विकल्प

  • `π/2`

  • `(2π)/3`

  • `(3π)/6`

  • `π/4`

MCQ
रिक्त स्थान भरें

उत्तर

If f(x) = log (sin x), x ∈ `[π/6, (5π)/6]`, then value of 'c' by applying LMVT is `underline(π/2)`.

Explanation:

Given, f(x) = log (sin x)

a = `π/6`, b = `(5π)/6`

By Lagrange's mean value theorem (L.M.V.T)

f'(c) = `("f"("b") - "f"("a"))/("b" - "a")`

∴ f'(x) = cot x

f(b) = `log (sin  π/6) = log (1/2) = - log 2`

f(a) = `log (sin  (5π)/6) = log (1/2) = - log 2`

∴ f'(c) = cot C = `(- log 2 + log 2)/((5π)/6 - π/(π/6))` = 0

= cot C = 0 = C = `π/2`

shaalaa.com
Higher Order Derivatives
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×