Advertisements
Advertisements
प्रश्न
If f(x) = `log_e{((1 - x))/((1 - x))}, |x| < 1, f{(2x)/((1 + x^2))}` is equal to ______.
विकल्प
2f(x)
(f(x))2
2f(x2)
–2f(x)
MCQ
रिक्त स्थान भरें
उत्तर
If f(x) = `log_e{((1 - x))/((1 - x))}, |x| < 1, f{(2x)/((1 + x^2))}` is equal to 2f(x).
Explanation:
f(x) = log(1 – x) – log(1 + x)
`f((2x)/(1 + x^2)) = log(1 - (2x)/(1 + x^2)) - log(1 + (2x)/(1 + x^2))`
= `log (1 - x)^2/(1 + x^2) - log (1 + x)^2/(1 + x^2)`
= `log((1 - x)/(1 + x))^2`
= `2log (1 - x)/(1 + x)`
= 2f(x)
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?