हिंदी

If f(x) = loge{(1-x)(1-x)},|x|<1,f{2x(1+x2)} is equal to ______. -

Advertisements
Advertisements

प्रश्न

If f(x) = `log_e{((1 - x))/((1 - x))}, |x| < 1, f{(2x)/((1 + x^2))}` is equal to ______.

विकल्प

  • 2f(x)

  • (f(x))2

  • 2f(x2)

  • –2f(x)

MCQ
रिक्त स्थान भरें

उत्तर

If f(x) = `log_e{((1 - x))/((1 - x))}, |x| < 1, f{(2x)/((1 + x^2))}` is equal to 2f(x).

Explanation:

f(x) = log(1 – x) – log(1 + x)

`f((2x)/(1 + x^2)) = log(1 - (2x)/(1 + x^2)) - log(1 + (2x)/(1 + x^2))`

= `log  (1 - x)^2/(1 + x^2) - log  (1 + x)^2/(1 + x^2)`

= `log((1 - x)/(1 + x))^2`

= `2log  (1 - x)/(1 + x)`

= 2f(x)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×