Advertisements
Advertisements
प्रश्न
If f(x) = `[tan (pi/4 + x)]^(1/x)`, x ≠ 0 at
= k, x = 0 is continuous x = 0. Then k = ______.
विकल्प
e2
1
e
e-2
MCQ
उत्तर
If f(x) = `[tan (pi/4 + x)]^(1/x)`, x ≠ 0 at
= k, x = 0 is continuous x = 0. Then k = e2.
Explanation:
We have,
f(x) = `[tan (pi/4 + x)]^(1/x)`, x ≠ 0
= k, x = 0 is continuous x = 0.
`therefore lim_(x->0)`f(x) = f(0)
`=> lim_(x->0) {tan (pi/4 + x)}^(1/x)` = k
`=> "e"^(lim_(x-> 0)) [tan (pi/4 + x) - 1] * 1/x` = k
`=> "e"^(lim_(x-> 0)) ((1 + tan x)/(1 - tan x) - 1) * 1/x` = k
`=> "e"^(lim_(x-> 0)) (2 tan x)/(x (1 - tan x))` = k
`=> "e"^(lim_(2x-> 0)) (tan x)/x * lim_(x-> 0) 1/(1 - tan x)` = k
`= "e"^(2 xx 1 xx 1)` = k
⇒ k = e2
shaalaa.com
Continuous and Discontinuous Functions
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?