Advertisements
Advertisements
प्रश्न
If f(z) = `(7 - z)/(1 - z^2)`, where z = 1 + 2i, then |f(z)| is ______.
विकल्प
`|z|/2`
|z|
2|z|
None of these
MCQ
रिक्त स्थान भरें
उत्तर
If f(z) = `(7 - z)/(1 - z^2)`, where z = 1 + 2i, then |f(z)| is `underlinebb(|z|/2)`.
Explanation:
Given that: z = 1 + 2i
|z| = `sqrt((1)^2 + (2)^2) = sqrt(5)`
Now f(z) = `(7 - z)/(1 - z^2)`
= `(7 - (1 + 2i))/(1 - (1 + 2i)^2`
= `(7 - 1 - 2i)/(1 - 1 - 4i^2 - 4i)`
= `(6 - 2i)/(4 - 4i)`
= `(3 - i)/(2 - 2i)`
= `(3 - i)/(2 - 2i) xx (2 + 2i)/(2 + 2i)`
= `(6 + 6i - 2i - 2i^2)/(4 - 4i^2)`
= `(6 + 4i + 2)/(4 + 4)`
= `(8 + 4i)/8`
= `1 + 1/2 i`
So |f(z)| = `sqrt((1)^2 + (1/2)^2)`
= `sqrt(1 + 1/4)`
= `sqrt(5)/2`
= `|z|/2`
shaalaa.com
Concept of Complex Numbers - Algebra of Complex Numbers - Equality
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?