हिंदी

If for a G.P., pth, qth and rth terms are a, b and c respectively; prove that : (q – r) log a + (r – p) log b + (p – q) log c = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If for a G.P., pth, qth and rth terms are a, b and c respectively; prove that : (q – r) log a + (r – p) log b + (p – q) log c = 0

योग

उत्तर

Let the first term of the G.P. be a and its common ratio be R.

Then,

pth term = a `=>` ARp – 1 = a

qth term = b `=>` ARq – 1 = b

rth term = c `=>` ARr 1 = c

Now,

aq – r × br – p × cp – q = (ARp – 1)q – r × (ARq – 1)r – p × (ARr – 1)p – q

= `A^(q - r) . R^((p - 1)(q - r)) xx A^(r - p) . R^((q - 1)(r - p)) xx A^(p - q) . R^((r - 1)(p - q))`

= `A^(q - r + r - p + p - q) xx R^((p - 1)(q - r) + (q - 1)(r - p) + (r - 1)(p - q))`

= A0 × R0

= 1

Taking log on both the sides, we get

log (aq – r × br – p × cp – q) = log 1

`=>` (q – r) log a + (r – p) log b + (p – q) log c = 0    ...(proved)

shaalaa.com
Simple Applications - Geometric Progression
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Geometric Progression - Exercise 11 (C) [पृष्ठ १५६]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 11 Geometric Progression
Exercise 11 (C) | Q 4 | पृष्ठ १५६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×