Advertisements
Advertisements
प्रश्न
If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.
विकल्प
-2
-1
0
1
MCQ
रिक्त स्थान भरें
उत्तर
If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is 1.
Explanation:
as `lim_("x" -> 2) ("sin" ("e"^("x" - 2) - 1))/("log" ("x" - 1)) = lim_("h" -> 0) ("sin" ("e"^"h" - 1))/("log" (1 + "h"))`
On substituting h = x - 2
`= lim_("h" -> 0) ("sin" ("e"^"h" - 1))/("e"^"h" - 1). ("e"^"h" - 1)/"h" . "h"/("log"(1 + "h"))`
`= 1 . 1 . 1`
`= 1 and "f" (2) = "k"`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?