Advertisements
Advertisements
प्रश्न
If G`(overlineg)` is the centroid, `H(overlineh)` is the orthocentre and P`(overlinep)` is the circumcentre of a triangle and `xoverlinep + yoverlineh + zoverlineg = 0`, then ______
विकल्प
x = 1, y = 2, z = -3
x = -2, y = 5, z = 1
x = 2, y = 1, z = -3
x = 2,y = -3, z = 5
उत्तर
If G`(overlineg)` is the centroid, `H(overlineh)` is the orthocentre and P`(overlinep)` is the circumcentre of a triangle and `xoverlinep + yoverlineh + zoverlineg = 0`, then x = 2, y = 1, z = -3.
Explanation:
We know that the centroid of the triangle divides the line segment joining its orthocentre and circumcentre in the ratio 2 : 1.
∴ `overlineg = (2.overlinep + 1.overlineh)/(2 + 1)`
⇒ `3overlineg = 2overlinep + overlineh`
⇒ `2overlinep + overlineh - 3overlineg = 0`
⇒ x = 2, y = 1, z = -3