हिंदी

If the Hcf of 408 and 1032 is Expressible in the Form 1032 M − 408 × 5, Find M. - Mathematics

Advertisements
Advertisements

प्रश्न

If the HCF of 408 and 1032 is expressible in the form 1032 m − 408 × 5, find m.

उत्तर

General integers are 408 and 1032 where 408 < 1032

By applying Euclid’s division lemma, we get

1032 = 408 × 2 + 216

Since remainder ≠ 0, apply division lemma on division 408 and remainder 216

408 = 216 × 1 + 192

Since remainder ≠ 0, apply division lemma on division 216 and remainder 192

216 = 192 × 1 + 24

Since remainder ≠ 0, apply division lemma on division 192 and remainder 24

192 = 24 × 8 + 32

We observe that 32m under in 0. So the last divisor 24 is the H.C.F of 408 and 1032

∴ 216 = 1032m – 408 × 5

⇒ 1032 m = 24 + 408 × 5

⇒ 1032m = 24 + 2040

⇒ 1032m = 2064

⇒ m =`2064/132=2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Real Numbers - Exercise 1.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 1 Real Numbers
Exercise 1.2 | Q 5 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×