हिंदी

If the Height of a Cylinder is Doubled, by What Number Must the Radius of the Base Be Multiplied So that the Resulting Cylinder Has the Same Volume as the Original Cylinder? - Mathematics

Advertisements
Advertisements

प्रश्न

If the height of a cylinder is doubled, by what number must the radius of the base be multiplied so that the resulting cylinder has the same volume as the original cylinder?

विकल्प

  • 4

  • \[\frac{1}{\sqrt{2}}\]

     

  • 2

  • \[\frac{1}{2}\]

     

MCQ

उत्तर

Let V1 be the volume of the cylinder with radius r1 and height h1, then

 `V_1 = pir_1^2 h_1`……. (1)

Now, let V2 be the volume after changing the dimension, then

` r_2 = xr_1 , h_2 = 2h_1`

So,

`V_2 = pi r_2^2 h_2 = pi xx (xr_1)^2 xx 2h_1`

`⇒ V_2 = 2 xx pi  x^2  r_1^2  h_1`

It is given that V1 =V2Therefpre,

`V_1 = V_2`

`⇒ pi r_^2 h_1 = 2 pi x^2  r_1^2 h_1`

`⇒ x^2  = 1/2 r_1^2`

`⇒ x = 1/sqrt(2) r_1`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Surface Areas and Volume of a Circular Cylinder - Exercise 19.4 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 19 Surface Areas and Volume of a Circular Cylinder
Exercise 19.4 | Q 14 | पृष्ठ २९

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×