Advertisements
Advertisements
प्रश्न
If in a ΔABC, the altitudes from the vertices A, B, C on opposite sides are in H.P, then sin A, sin B, sin C are in ______
विकल्प
G. P.
A. P.
A.P - G.P.
H. P.
MCQ
रिक्त स्थान भरें
उत्तर
If in a ΔABC, the altitudes from the vertices A, B, C on opposite sides are in H.P, then sin A, sin B, sin C are in A. P.
Explanation:
Let altitudes from A, B and C be p1, p2 and p3 resp.
∴ Δ = `1/2 p_1a = 1/2 p_2b = 1/2 p_3b`
Given that, p1, p2, p3, are in H.P.
`\implies (2Δ)/a, (2Δ)/b, (2Δ)/c` are in H.P.
`\implies 1/a, 1/b, 1/c` are in H.P.
`\implies` a, b, c are in A.P.
By sine formula
`\implies` K sin A, K sin B, K sin C are in AP
`\implies` sinA, sinB, sinC are in A.P.
shaalaa.com
Properties of Triangle
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?