Advertisements
Advertisements
प्रश्न
If Δ is the area and 2s the sum of three sides of a triangle, then
विकल्प
`Δ ≤ s^2/(3sqrt(3)`
`Δ ≤ s/2`
`Δ > s^2/sqrt(3)`
None of these
MCQ
उत्तर
`Δ ≤ s^2/(3sqrt(3)`
Explanation:
We have 2s = a + b + c, Δ2 = s(s – a)(s – b)(s – c)
∵ A.M. ≥ G.M.
∴ `((s - a) + (s - b) + (s - c))/3 ≥ (s - a)(s - b)(s - c)^(1/3)`
⇒ `(3s - (a + b + c))/3 ≥ (s - a)(s - b)(s - c)^(1/3)`
Since a + b + c = 2s we have
⇒ `(3s - 2s)/3 ≥ (s - a)(s - b)(s - c)^(1/3)`
⇒ `s/3 ≥ (s - a)(s - b)(s - c)^(1/3)`
Cubing both sides, we get
⇒ `(s/3)^3 > (s - a)(s - b)(s - c)`
⇒ `s/27 > (s - a)(s - b)(s - c)`
Rearranging, we get
⇒ `s^3/27 > A^2/s`
⇒ `s^4 ≥ 27A^2`
∴ `A^2 ≤ s^4/27`
or `A ≤ s^2/(3sqrt(3)`
shaalaa.com
Determinants
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?