हिंदी

If the Line Y = Mx Does Not Intersect the Circle (X + 10)2 + (Y + 10)2 = 180, Then Write the Set of Values Taken by M. - Mathematics

Advertisements
Advertisements

प्रश्न

If the line y = mx does not intersect the circle (x + 10)2 + (y + 10)2 = 180, then write the set of values taken by m.

उत्तर

Let us put y = mx in the equation (x + 10)2 + (y + 10)2 = 180.
Now, we have:
(x + 10)2 + (mx + 10)2 = 180
On simplifying, we get: 

\[x^2 \left( m^2 + 1 \right) + 20x\left( m + 1 \right) + 20 = 0\]

∴ Discriminant (D) = \[\sqrt{400 \left( m + 1 \right)^2 - 80( m^2 + 1)} = 4\sqrt{10}\sqrt{\left( 2m + 1 \right)\left( m + 2 \right)}\] It is given that the line y = mx does not intersect the circle (x + 10)2 + (y + 10)2 = 180.
∴ D <  0 

\[\Rightarrow 4\sqrt{10}\sqrt{\left( 2m + 1 \right)\left( m + 2 \right)} < 0\]

\[ \Rightarrow m \in \left( - 2, \frac{- 1}{2} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: The circle - Exercise 24.5 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 24 The circle
Exercise 24.5 | Q 8 | पृष्ठ ३८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×