हिंदी

If M is the Mean of X1 , X2 , X3 , X4 , X5 and X6, Prove that (X1 − M) + (X2 − M) + (X3 − M) + (X4 − M) + (X5 — M) + (X6 − M) = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

If M is the mean of x1 , x2 , x3 , x4 , x5 and x6, prove that
(x1 − M) + (x2 − M) + (x3 − M) + (x4 − M) + (x5 — M) + (x6 − M) = 0.

उत्तर

Let m be the mean of x1, x2 , x3 , x4, x5 and x6
 

Than M  = `(x_1+ x_2 + x_3 + x_4+ x_5 +x_6)/ 6`

⇒ `x_1+ x_2 + x_3 + x_4+ x_5 +x_6`

To prove :  `( x_1 - M ) + ( x_2 - M ) + ( x_3 - M ) + ( x_4 - M ) + ( x_5 - M ) + ( x_6 - M )`

= `( x_1 + x_2 + x_3 + x_4 + x_5 + x_6 ) - (M + M + M + M + M + M )`

=   6M - 6M
=   0
=   RHS
 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: Measures of Central Tendency - Exercise 24.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 24 Measures of Central Tendency
Exercise 24.1 | Q 19 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×