Advertisements
Advertisements
प्रश्न
If m times mth term of an A.P. is equal to n times its nth term, show that the (m + n) term of the A.P. is zero
योग
उत्तर
Let a be the first term and d be the common difference of the given A.P. Then, m times mth term = n times nth term
⇒ mam = nan
⇒ m{a + (m – 1) d} = n {a + (n – 1) d}
⇒ m{a + (m – 1) d} – n{a + (n – 1) d} = 0
⇒ a(m – n) + {m (m – 1) – n(n – 1)} d = 0
⇒ a(m – n) + (m – n) (m + n – 1) d = 0
⇒ (m – n) {a + (m + n – 1) d} = 0
⇒ a + (m + n – 1) d = 0
⇒ am+n = 0
Hence, the (m + n)th term of the given A.P. is zero
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?