Advertisements
Advertisements
प्रश्न
If n is a positive integer, using Binomial theorem, show that, 9n+1 − 8n − 9 is always divisible by 64
उत्तर
(1 + x)n = nC0 + nC1x + nC2x2 + ........ + nCn−1 xn−1 + nCnxn
Put x = 8 we get
(1 + 8)n = nC0 + nC1(8) + nC2(8)2 + ......... + nCn–1 8n–1 + nCn . 8n
9n = nC0 + nC1(8) + nC2(8)2 + ......... + nCn–1 8n–1 + nCn . 9n = 1 + 8n + nC2 × 82 + ........ +
nCn–1 8n–1 + nCn . 8n
9n - 8n – 1 = nC2 × 82 + ........ + nCn–1 8n–1 + nCn × 8n
9n - 8n – 1 = 82 [nC2 + .......... + nCn–1 × 8n–3 + nCn × 8n–2]
Which is divisible by 64 for all positive integer n.
∴ 9n – 8n – 1 is divisible by 64 for all positive integer n.
Put n = n + 1 we get
9n + 1 – 8 (n + 1) – 1 is divisible by 64 for all possible integer n
(9n + 1 – 8n – 8 – 1) is divisible by 64
∴ 9n + 1 – 8n – 9 is always divisible by 64
APPEARS IN
संबंधित प्रश्न
Evaluate the following using binomial theorem:
(999)5
Expand the following by using binomial theorem.
`(x + 1/x^2)^6`
Find the middle terms in the expansion of
`(2x^2 - 3/x^3)^10`
Find the term independent of x in the expansion of
`(x^2 - 2/(3x))^9`
Show that the middle term in the expansion of is (1 + x)2n is `(1*3*5...(2n - 1)2^nx^n)/(n!)`
Find the Co-efficient of x11 in the expansion of `(x + 2/x^2)^17`
The middle term in the expansion of `(x + 1/x)^10` is
The last term in the expansion of (3 + √2 )8 is:
Sum of binomial coefficient in a particular expansion is 256, then number of terms in the expansion is:
Sum of the binomial coefficients is
Expand `(2x^2 - 3/x)^3`
Compute 1024
Find the coefficient of x15 in `(x^2 + 1/x^3)^10`
Find the coefficient of x4 in the expansion `(1 + x^3)^50 (x^2 + 1/x)^5`
Find the constant term of `(2x^3 - 1/(3x^2))^5`
If n is a positive integer and r is a non-negative integer, prove that the coefficients of xr and xn−r in the expansion of (1 + x)n are equal
If a and b are distinct integers, prove that a − b is a factor of an − bn, whenever n is a positive integer. [Hint: write an = (a − b + b)n and expaand]