Advertisements
Advertisements
प्रश्न
If P = {x : x ∈ W and 4 ≤ x ≤ 8}, and Q = {x : x ∈ N and x < 6}. Find: Is (P ∪ Q) ⊃ (P ∩ Q)?
उत्तर
Yes, all the element of set P ∪ Q are contained in the set P ∩ Q.Therefore P ∪ Q is a proper subset of P ∪ Q.
APPEARS IN
संबंधित प्रश्न
If P = {x : x ∈ W and 4 ≤ x ≤ 8}, and Q = {x : x ∈ N and x < 6}. Find: P ∪ Q and P ∩ Q.
If A = {5, 6, 7, 8, 9}, B = {x : 3 < x < 8 and x ∈ W} and C = {x : x ≤ 5 and x ∈ N}.
Find: A ∪ B and (A ∪ B) ∪ C
If A = {5, 6, 7, 8, 9}, B = {x : 3 < x < 8 and x ∈ W} and C = {x : x ≤ 5 and x ∈ N}. Find:
A ∩ B and (A ∩ B) ∩ C
If A = {5, 6, 7, 8, 9}, B = {x : 3 < x < 8 and x ∈ W} and C = {x : x ≤ 5 and x ∈ N}. Find:
B ∩ C and A ∩ (B ∩ C)
Is (A ∪ B) ∪ C = A ∪ (B ∪ C)?
Is (A ∩ B) ∩ C = A ∩ (B ∩ C)?
Given A = {0, 1, 2, 4, 5}, B = {0, 2, 4, 6, 8} and C = {0, 3, 6, 9}. Show that A ∪ (B ∪ C) = (A ∪ B) ∪ C i.e. the union of sets is associative.
Given A = {0, 1, 2, 4, 5}, B = {0, 2, 4, 6, 8} and C = {0, 3, 6, 9}. Show that A ∩ (B ∩ C) = (A ∩ B) ∩ C i.e. the intersection of sets is associative.
If A = {x ∈ W : 5 < x < 10}, B = {3, 4, 5, 6, 7} and C = {x = 2n; n ∈ N and n ≤4}. Find:
B ∪ (A ∩ C)
If A = {x ∈ W : 5 < x < 10}, B = {3, 4, 5, 6, 7} and C = {x = 2n; n ∈ N and n ≤4}. Find:
(A ∩ B) ∪ (A ∩ C)
If P = {factors of 36} and Q = {factors of 48}; Find: P ∩ Q
If P = {factors of 36} and Q = {factors of 48}; Find: Q - P.