Advertisements
Advertisements
प्रश्न
If Q(0, 2) is equidistant from P(5, −3) and R(x, 7), then find the value(s) of x.
योग
उत्तर
Given, Q(0, 2) is equidistant from P(5, −3) and R(x, 7), which means PQ = QR.
Find the distance of PQ and QR using distance formula,
`sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
PQ = `sqrt((5 - 0)^2 + (-3 -2)^2)`
= `5sqrt2`
QR = `sqrt((0 - x)^2 + (2 - 7)^2)`
= `sqrt(x^2 + 25)`
Now, PQ = QR
∴ `5sqrt2 = sqrt(x^2 + 25)`
On squaring both sides of the above equation, we get
∴ 50 = x2 + 25
∴ x2 = 25
∴ x = ±5
Therefore, the values of x are 5 and −5.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?