हिंदी

If R = {(2, 1), (4, 7), (1, −2), ...}, Then Write the Linear Relation Between the Components of the Ordered Pairs of the Relation R. - Mathematics

Advertisements
Advertisements

प्रश्न

If R = {(2, 1), (4, 7), (1, −2), ...}, then write the linear relation between the components of the ordered pairs of the relation R.

उत्तर

Given:
R = {(2, 1), (4, 7), (1, −2), ...}
We can observe that 

\[1 = 3 \times 2 - 5\]

\[7 = 3 \times 4 - 5\]

\[ - 2 = 3 \times 1 - 5\]

Thus, the linear relation between the components of the ordered pairs of the relation R is y = 3x - 5.

 

 

shaalaa.com
Sets - Ordered Pairs
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Relations - Exercise 2.4 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 2 Relations
Exercise 2.4 | Q 8 | पृष्ठ २५

संबंधित प्रश्न

If the ordered pairs (x, −1) and (5, y) belong to the set {(ab) : b = 2a − 3}, find the values of x and y


If a ∈ [−1, 2, 3, 4, 5] and b ∈ [0, 3, 6], write the set of all ordered pairs (ab) such that a + b= 5.  


Let A and B be two sets such that n(A) = 3 and n(B) = 2.
If (x, 1), (y, 2), (z, 1) are in A × B, find A and B, where xyz are distinct elements.


A relation R is defined from a set A = [2, 3, 4, 5] to a set B = [3, 6, 7, 10] as follows:
(xy) ∈ R ⇔ x is relatively prime to y
Express R as a set of ordered pairs and determine its domain and range.


Let A be the set of first five natural numbers and let R be a relation on A defined as follows:
(xy) ∈ R ⇔ x ≤ y
Express R and R−1 as sets of ordered pairs. Determine also (i) the domain of R−1 (ii) the range of R.


Write the relation as the sets of ordered pairs:

(i) A relation R from the set [2, 3, 4, 5, 6] to the set [1, 2, 3] defined by x = 2y.


Write the relation as the sets of ordered pairs:

(ii) A relation R on the set [1, 2, 3, 4, 5, 6, 7] defined by (xy) ∈ R ⇔ x is relatively prime to y.


Write the relation as the sets of ordered pairs:

(iii) A relation R on the set [0, 1, 2, ....., 10] defined by 2x + 3y = 12.


Write the relation as the sets of ordered pairs:

(iv) A relation R from a set A = [5, 6, 7, 8] to the set B = [10, 12, 15, 16,18] defined by (xy) ∈ R ⇔ x divides y.


Let R be a relation in N defined by (xy) ∈ R ⇔ x + 2y =8. Express R and R−1 as sets of ordered pairs.


 Let A = {1, 2, 3} and\[R = \left\{ \left( a, b \right) : \left| a^2 - b^2 \right| \leq 5, a, b \in A \right\}\].Then write R as set of ordered pairs.


Write the following relations as sets of ordered pairs and find which of them are functions:

(a) {(xy) : y = 3xx ∈ {1, 2, 3}, y ∈ [3,6, 9, 12]}


Write the following relations as sets of ordered pairs and find which of them are functions: 

(b) {(xy) : y > x + 1, x = 1, 2 and y = 2, 4, 6}


Write the following relations as sets of ordered pairs and find which of them are functions:

{(xy) : x + y = 3, xy, ∈ [0, 1, 2, 3]}

 

 


Express the function f : X → given by f(x) = x+ 1 as set of ordered pairs, where X = {−1, 0, 3, 9, 7}


If `(x/3+1, y-2/3)` = `(5/3,1/3),`find the values of x and y.


Given A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A}. Find the ordered pairs which satisfy the conditions given below:

x + y = 5


Given A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A}. Find the ordered pairs which satisfy the conditions given below:

x + y > 8


Express the following functions as set of ordered pairs and determine their range.
f : X → R, f(x) = x3 + 1, where X = {–1, 0, 3, 9, 7}


State True or False for the following statement.

The ordered pair (5, 2) belongs to the relation R = {(x, y) : y = x – 5, x, y ∈ Z}.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×