हिंदी

If S1 is the Sum of an Arithmetic Progression of 'N' Odd Number of Terms and S2 the Sum of the Terms of the Series in Odd Places, Then S 1 S 2 = - Mathematics

Advertisements
Advertisements

प्रश्न

If S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2} =\]

 

विकल्प

  • \[\frac{2n}{n + 1}\]

     

  • \[\frac{n}{n + 1}\]

     

  • \[\frac{n + 1}{2n}\]

     

  • \[\frac{n + 1}{n}\]

     

MCQ

उत्तर

In the given problem, we are given S1 as the sum of an A.P of ‘n’ odd number of terms and S2 the sum of the terms of the series in odd places.

We need to find  `(S_1)/(S_2)`

Now, let a1, a2…. an be the n terms of A.P

Where n is odd

Let d be the common difference of the A.P

Then,

`S_1 = n /2 [ 2a_1 + ( n - 1) d]`             ............(1)

And  Sbe the sum of the terms of the places in odd places,

Where, number of terms = `( n + 1) /2` 

Common difference = 2d

So,

`S_2 =  ((n + 1)/2 )/2 [2a_1 + ((n+1)/2 - 1) 2d]`

`S_2 = ( n+1)/4 [2a_1 + ((n-1)/2)2d]`

`S_2 = ( n +1)/4 [ 2a _1 + (n-1)d ]`              .............(2) 

Now,

`(S_1)/(S_2) = (n/2[2a_1 + (n-1)d])/((n+1)/4[2a_1 + (n-1)d])`

`(S_1)/(S_2) = (4n)/(2(n +1))`

`(S_1)/(S_2) = (2n)/(n + 1)`

Thus,  `(S_1)/(S_2) = (2n)/(n + 1)` 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Arithmetic Progression - Exercise 5.8 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 5 Arithmetic Progression
Exercise 5.8 | Q 13 | पृष्ठ ५८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×