हिंदी

If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p -

Advertisements
Advertisements

प्रश्न

If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p

योग

उत्तर

We have,

`LHS = q(p^2 – 1) = (secθ + cosecθ) [(sinθ + cosθ)^2 – 1]`

`=( \frac{1}{\cos \theta }+\frac{1}{\sin \theta } \right)\{\sin2\theta +\text{cos}2\theta +2\sin \theta \cos \theta 1\}`

`=( \frac{\sin \theta +\cos \theta }{\cos \theta \sin \theta })(1+2\sin \theta \cos \theta 1)`

`=( \frac{\sin \theta +\cos \theta }{\cos \theta \sin \theta })2\sin \theta \cos`

= 2(sinθ + cosθ) = 2p = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×