हिंदी

If the coefficients of 2nd, 3rd and the 4th terms in the expansion of (1 + x)n are in A.P., then value of n is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If the coefficients of 2nd, 3rd and the 4th terms in the expansion of (1 + x)n are in A.P., then value of n is ______.

विकल्प

  • 2

  • 7

  • 11

  • 14

MCQ
रिक्त स्थान भरें

उत्तर

If the coefficients of 2nd, 3rd and the 4th terms in the expansion of (1 + x)n are in A.P., then value of n is 7.

Explanation:

Given expression is (1 + x)n

(1 + x)n = nC0 + nC1x + nC2x2 + nC3x3 + … nCnxn

Here, coefficient of 2nd term = nC1

Coefficient of 3rd term = nC2

And coefficient of 4th term = nC3

Given that nC1, nC2 and nC3 are in A.P.

∴ 2 . nC2 = nC1 + nC3

⇒ `2 * (n(n - 1))/2 = n + (n(n - 1)(n - 2))/(3*2*1)`

⇒ `n(n - 1) = n + (n(n - 1)(n - 2))/6`

⇒ n – 1 = `1 + ((n - 1)(n - 2))/6`

⇒ 6n – 6 = 6 + n2 – 3n + 2

⇒ n2 – 3n – 6n + 14 = 0

⇒ n2 – 9n + 14 = 0

⇒ n2 – 7n – 2n + 14 = 0

⇒ n(n – 7) – 2(n – 7) = 0

⇒ (n – 2)(n – 7) = 0

⇒ n = 2, 7

⇒ n = 7

Whereas n = 2 is not possible

shaalaa.com
Proof of Binomial Therom by Combination
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Exercise [पृष्ठ १४४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Exercise | Q 22 | पृष्ठ १४४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×