Advertisements
Advertisements
प्रश्न
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
विकल्प
log a - log b
a + b
log a + log b
a - b
MCQ
रिक्त स्थान भरें
उत्तर
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = a + b.
Explanation:
Given function
f(x) = `(log (1 + "a"x) - log(1 - "b"x))/x, x ne 0`
is continuous at x = 0
`therefore lim_(x->0) "f"(x) = "f"(0)` ...(i)
Here,
`lim_(x->0) "f"(x) = lim_(x->0) (log (1 + "a"x) - log(1 - "b"x))/x ...(0/0 "form")`
`= lim_(x->0) ("a"/(1 + "ax") + ("b")/(1 - "bx"))/1` (Using L' Hospital's Rule)
`= lim_(x->0) ("a"/(1 + "bx") + "b"/(1 - "bx"))` = a + b
From equation (i), we get
f(0) = a + b
shaalaa.com
Differentiation
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?