Advertisements
Advertisements
प्रश्न
If the function
f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`
= 16 , x = 0
is continuous at x = 0, then k = ?
विकल्प
`+- 1/8`
± 4
± 2
± 8
MCQ
उत्तर
± 8
Explanation:
We have function,
f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`
= 16 , x = 0
is continuous at x = 0
`therefore lim_(x -> 0) "f"(x) = "f"(0)`
`=> lim_(x -> 0) (("e"^"kx" - 1)/"kx")((tan "kx")/"kx") xx "k"^2/4 = 16`
`=> "k"^2/4 = 16`
⇒ k2 = 64
⇒ k = ± 8
shaalaa.com
Limits of Exponential and Logarithmic Functions
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?