Advertisements
Advertisements
प्रश्न
If the plane passing through the points (1, 2, 3), (2, 3, 1) and (3, 1, 2) is ax + by + cz = d then a + 2b + 3c = ______.
विकल्प
0
1
6
18
MCQ
रिक्त स्थान भरें
उत्तर
If the plane passing through the points (1, 2, 3), (2, 3, 1) and (3, 1, 2) is ax + by + cz = d then a + 2b + 3c = 6.
Explanation:
Equation of plane passing through (1, 2, 3), (2, 3, 1) and (3, 1, 2) is
`|(x - 1,"y" - 2, "z" - 3),(2 - 1, 3 - 2, 1 - 3),(3 - 1, 1 - 2, 2 - 3)|` = 0
`=> |(x - 1, "y" - 2, "z" - 3),(1,1,-2),(2,-1,-1)|` = 0
⇒ (x - 1)(- 3) - (y - 2)(3) + (z - 3)(- 3) = 0
⇒ - 3x + 3 - 3y + 6 - 3z + 9 = 0
⇒ x + y + z = 6
Comparing the above equation with
ax + by + cz = d, we get
a = 1, b = 1, c = 1
Now, , a + 2b + 3c = (1) + 2(1) + 3(1) = 6
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?