हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

If the two lines x-12=y+13=z-14 and mx-31=y-m2 = z intersect at a point, find the value of m - Mathematics

Advertisements
Advertisements

प्रश्न

If the two lines `(x - 1)/2 = (y + 1)/3 = (z - 1)/4` and `(x - 3)/1 = (y - "m")/2` = z intersect at a point, find the value of m

योग

उत्तर

(x1, y1, z1) = (1, -1, 1), (x2, y2, z2)

= (3, m, 0)

(12, b3) = (2, 3, 4), (d1, d2, d3)

= (1, 2, 1).

`|(x-2 - x_1, y_2 - y_1, z_2 - z_1),("b"_1, "b"_2, "b"_3),("d"_1, "d"_2, "d"_3)|` = 0

`|(3 - 1, "m" + 1, 0 - 1),(2, 3, 4),(1, 2, 1)|` = 0

`|(2, "m" + 1, -1),(, 3, 4),(1, 2, 1)|` = 0

2(3 – 8) – (m + 1)(2 – 4) – 1(4 – 3) = 0

– 10 – (m + 1)(– 2) – 1(1) = 0

– 10 + 2m + 2 – 1 = 0

2m – 9 = 0

2m = 9

m = `9/2`

shaalaa.com
Application of Vectors to 3-dimensional Geometry
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Applications of Vector Algebra - Exercise 6.5 [पृष्ठ २५५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 6 Applications of Vector Algebra
Exercise 6.5 | Q 3 | पृष्ठ २५५

संबंधित प्रश्न

Find the non-parametric form of vector equation and Cartesian equations of the straight line passing through the point with position vector `4hat"i" + 3hat"j" - 7hat"k"` and parallel to the vector `2hat"i" - 6hat"j" + 7hat"k"`


Find the direction cosines of the straight line passing through the points (5, 6, 7) and (7, 9, 13). Also, find the parametric form of vector equation and Cartesian equations of the straight line passing through two given points


Find the acute angle between the following lines.

`(x + 4)/3 = (y - 7)/4 = (z + 5)/5, vec"r" = 4hat"k" + "t"(2hat"i" + hat"j" + hat"k")`


The vertices of ΔABC are A(7, 2, 1), 5(6, 0, 3), and C(4, 2, 4). Find ∠ABC


If the straight lines `(x - 5)/(5"m" + 2) = (2 - y)/5 = (1 - z)/(-1)` and x = `(2y + 1)/(4"m") = (1 - z)/(-3)` are perpendicular to ech other find the  value of m


Show that the points (2, 3, 4), (– 1, 4, 5) and (8, 1, 2) are collinear


Find the parametric form of vector equation and Cartesian equations of straight line passing through (5, 2, 8) and is perpendicular to the straight lines `vec"r" = (hat"i" + hat"j" - hat"k") + "s"(2hat"i" - 2hat"j" + hat"k")` and `vec"r" = (2hat"i" - hat"j" - 3hat"k") + "t"(hat"i" + 2hat"j" + 2hat"k")`


Show that the lines `vec"r" = (6hat"i" + hat"j" + 2hat"k") + "s"(hat"i" + 2hat"j" - 3hat"k")` and `vec"r" = (3hat"i" + 2hat"j" - 2hat"k") + "t"(2hat"i" + 4hat"j" - 5hat"k")` are skew lines and hence find the shortest distance between them


Show that the lines `(x - 3)/3 = (y - 3)/(-1), z - 1` = 0 and `(x - 6)/2 = (z - 1)/3, y - 2` = 0 intersect. Aslo find the point of intersection


Find the parametric form of vector equation of the straight line passing through (−1, 2, 1) and parallel to the straight line `vec"r" = (2hat"i" + 3hat"j" - hat"k") + "t"(hat"i" - 2hat"j" + hat"k")` and hence find the shortest distance between the lines


Choose the correct alternative:

If `[vec"a", vec"b", vec"c"]` = 1, then the value of `(vec"a"*(vec"b" xx vec"c"))/((vec"c" xx vec"a")*vec"b") + (vec"b"*(vec"c" xx vec"a"))/((vec"a" xx vec"b")*vec"c") + (vec"c"*(vec"a" xx vec"b"))/((vec"c" xx vec"b")*vec"a")` is


Choose the correct alternative:

If `vec"a", vec"b", vec"c"` are non-coplanar, non-zero vectors `[vec"a", vec"b", vec"c"]` = 3, then `{[[vec"a" xx vec"b", vec"b" xx vec"c", vec"c" xx vec"a"]]}^2` is equal to


Choose the correct alternative:

I`vec"a" xx  (vec"b" xx vec"c") = (vec"a" xx vec"b") xx vec"c"`, where `vec"a", vec"b", vec"c"` are any three vectors such that `vec"b"*vec"c" ≠ 0` and `vec"a"*vec"b" ≠ 0`, then `vec"a"` and `vec"c"` are


Choose the correct alternative:

The vector equation `vec"r" = (hat"i" - hat"j" - hat"k") + "t"(6hat"i" - hat"k")` represents a straight line passing through the points


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×