हिंदी

If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series: (x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______. -

Advertisements
Advertisements

प्रश्न

If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.

विकल्प

  • `(x + y + xy)/((1 - x)(1 - y))`

  • `(x + y - xy)/((1 - x)(1 - y))`

  • `(x + y + xy)/((1 + x)(1 + y))`

  • `(x + y - xy)/((1 + x)(1 + y))`

MCQ
रिक्त स्थान भरें

उत्तर

If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is `underlinebb((x + y - xy)/((1 - x)(1 - y)))`.

Explanation:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ....

Multiply and divide by (x – y)

= `1/((x - y)){(x - y)(x + y) + (x - y)(x^2 + xy + y^2) + (x - y)(x^3 + x^2y + xy^2 + y^3 + ...)}`

= `1/((x - y)){x^2 - y^2 + x^3 - y^3 + x^4 - y^4 + ...}`

= `1/(x - y){x^2 + x^3 + ... -(y^2 + y^3 + ...)}`

= `1/(x - y){x^2/(1 - x) - y^2/(1 - y)}`

= `1/(x - y){(x^2(1 - y) - y^2(1 - x))/((1 - x)(1 - y))}`

= `1/(x - y){(x^2 - y^2 - x^2y + xy^2)/((1 - x)(1 - y))}`

= `1/(x - y)({(x - y)(x + y) - xy(x - y)})/((1 - x)(1 - y))`

= `1/(x - y) ((x - y)(x + y - xy))/((1 - x)(1 - y))`

= `(x + y - xy)/((1 - x)(1 - y))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×