Advertisements
Advertisements
प्रश्न
If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.
विकल्प
`(x + y + xy)/((1 - x)(1 - y))`
`(x + y - xy)/((1 - x)(1 - y))`
`(x + y + xy)/((1 + x)(1 + y))`
`(x + y - xy)/((1 + x)(1 + y))`
उत्तर
If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is `underlinebb((x + y - xy)/((1 - x)(1 - y)))`.
Explanation:
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ....
Multiply and divide by (x – y)
= `1/((x - y)){(x - y)(x + y) + (x - y)(x^2 + xy + y^2) + (x - y)(x^3 + x^2y + xy^2 + y^3 + ...)}`
= `1/((x - y)){x^2 - y^2 + x^3 - y^3 + x^4 - y^4 + ...}`
= `1/(x - y){x^2 + x^3 + ... -(y^2 + y^3 + ...)}`
= `1/(x - y){x^2/(1 - x) - y^2/(1 - y)}`
= `1/(x - y){(x^2(1 - y) - y^2(1 - x))/((1 - x)(1 - y))}`
= `1/(x - y){(x^2 - y^2 - x^2y + xy^2)/((1 - x)(1 - y))}`
= `1/(x - y)({(x - y)(x + y) - xy(x - y)})/((1 - x)(1 - y))`
= `1/(x - y) ((x - y)(x + y - xy))/((1 - x)(1 - y))`
= `(x + y - xy)/((1 - x)(1 - y))`