Advertisements
Advertisements
प्रश्न
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
विकल्प
–1
`1/2`
`-1/2`
1
उत्तर
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = 1.
Explanation:
Consider, I = `intsqrt((x - 5)/(x - 7))dx`
= `intsqrt(((x - 5)(x - 5))/((x - 7)(x - 5)))dx`
= `int (x - 5)/sqrt(x^2 - 12x + 35)dx`
= `1/2int (2x - 12 + 2)/sqrt(x^2 - 12x + 35)`
= `1/2int(2x - 12)/(sqrt(x^2 - 12x + 35))dx + int 1/sqrt(x^2 - 12x + 35)dx`
= `sqrt(x^2 - 12x +35) + int 1/sqrt((x^2 - 12x + 36 - 1))dx+ C`
= `sqrt(x^2 - 12x + 35) + int 1/sqrt((x - 6)^2 - 1^2)dx + C`
I = `sqrt(x^2 - 12x + 35) + log|x - 6 + sqrt(x^2 - 12x + 35)| + C`
As, I = `Asqrt(x^2 - 12x + 35) + log|x - 6 + sqrt(x^2 - 12x + 35) + C|`
Hence, A = 1