हिंदी

If X/(B + C - A) = Y /(C + a - B) = Z/(A + B - C) , Then Prove that Each Ratio is Equal to the Ratio of (X + Y+Z)/(A + B + C) - Mathematics

Advertisements
Advertisements

प्रश्न

If `"x"/("b + c - a") =" y" /("c + a - b") = "z"/("a + b - c")` , then prove that each ratio is equal to the ratio of `("x + y+z")/("a + b + c")`

योग

उत्तर

`"x"/("b + c - a") =" y" /("c + a - b") = "z"/("a + b - c") = "k"`

x = k (b + c- a) 

Y = k (c+a-b)

z = k (a+b-c) 

Now ,

`("x + y+z")/("a + b + c")`

`= ("k"("b + c - a") + "k" ("c + a - b")+ "k" ("a + b - c"))/("a + b + c")`

`= ("k" ("b + c - a + c + a - b + a + b - c"))/("a + b + c")`

`= ("k"("a + b + c"))/("a + b + c") = "k"`

Hence , 

`"x"/("b + c - a") =" y" /("c + a - b") = "z"/("a + b - c") = ("x + y+z")/("a + b + c")`

Proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Ratio and Proportion - Exercise 9.3

APPEARS IN

फ्रैंक Mathematics - Part 2 [English] Class 10 ICSE
अध्याय 9 Ratio and Proportion
Exercise 9.3 | Q 11
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×