Advertisements
Advertisements
प्रश्न
If x = f(t) and y = g(t) are differentiable functions of t, then prove that:
`dy/dx = ((dy//dt))/((dx//dt))`, if `dx/dt ≠ 0`
Hence, find `dy/dx` if x = a cot θ, y = b cosec θ.
उत्तर
Given: x = f(t) and y = g(t)
Let δx and δy be the increments in x and y respectively, corresponding to the increment δt in t
Since x and y are differentiable functions of t,
`dx/dt = lim_(δt→0) (δx)/(δt)` and `dy/dt = lim_(δt -> 0) (δy)/(δt)` ...(1)
Also, as δt `→` 0, δx `→` 0 ...(2)
Now, `(δy)/(δx) = ((δy//δt))/((δx//δt))` ...[δ ≠ 0]
Taking limits as δt `→` 0, we get
`lim_(δt → 0) (δy)/(δx) = lim_(δt → 0) ((δy//δt))/((δx//δt))`
`lim_(δx → 0) (δy)/(δx) = (lim_(δt → 0) (δy//δt))/(lim_(δt -> 0) (δx//δt)) = ((dy//dt))/((dy//dt))` ...[By (1) and (2)]
∵ The limits in RHS exist
∴ `lim_(δx -> 0) (δy)/(δx)` exists and is equal to `dy/dx`
∴ `dy/dx = (dy//dt)/(dx//dt)`, if `dx/dt ≠ 0`
To find `bb(dy/dx)` if x = a cot θ, y = b cosec θ:
x = a cot θ, y = b cosec θ
Differentiating x and y w.r.t.θ, we get
`dx/(dθ) = a d/(dθ) (cot θ)` = a(– cosec2θ) = – a cosec2θ
and `dy/(dθ) = b d/(dθ)("cosec" θ)` = b(– cosec θ cot θ)
= – b cosec θ cot θ
∴ `dy/dx = ((dy//dθ))/((dx//dθ))`
= `(- b "cosec" θ cot θ)/(- a "cosec"^2θ)`
= `b/a.(cot θ)/("cosec" θ)`
= `b/a xx cosθ/sinθ xx sinθ`
= `(b/a) cos θ`.