Advertisements
Advertisements
प्रश्न
If `x=uv, y=u/v."prove that" jj,=1`
उत्तर
x=uv .............(1)
∴` x_u=(delx)/(delu)=v` and ` x_v=(delx)/(delv)=u` ..........(2)
And,` y=u/v` ...............(3)
∴` yu=(dely)/(delu)=1/v` and ` yv=
(dely)/(delv)=u -1/v^2` ..............(4)
∴ `J = (del(x,y))/(del(u,v))=|[x_u,x_v],[y_u,y_v]|`
=`x_u y_v x_v y_u`
=`v u (-1)/v^2 - u 1/v` …(From 2 & 4)
=` (-u)/v-u/v`
=`(-2u)/v`
∴ `J=-2y
From (3), u = vy
Substituting ‘u’ in (1) we get, x= (vy)v
`x/y=v^2`
∴ `v=sqrtx/sqrty=x^(1/2)y^(1/2)`
∴` v_x=y^(1/2).x^(-1/2)` and `v_y=x^(1/2).-1/2 y^(-3/2)`
From (6) and (7), `u= (x^(1/2) y^(-1/2))y`
∴ `u=x^(1/2) y^ (1/2)`
∴ `u_x=y^(1/2)`. and `u_y=x^ (1/2)1/2 y^(-1/2)` ......(9)
J'= `(del(u,v))/(del(x,y))=|[u_x,u_y],[v_x,v_y]|`
= `u_xv_y-u_y v_x`
=`(y^(1/2). 1/2x^(-1/2))(x^(1/2).-1/2 y^(-3/2))-(x^(1/2).1/2 y^(-1/2)) (y^-(1/2).1/2 x^((-1)/2))` …(From 8 & 9)
= `-1/4 x^(-1/2+1/2).y^(1/2-3/2) -1/4 x^(1/2-1/2).y^(-1/2-1/2)`
`(-1)/4.y^-1-1/4.y^-1`
=`-2/4.y^-1`
∴` J' =-1/(2y)` .................(10)
From (5) and (10), ` J.J'=-2y. -1/(2y)`
∴ `J.J'=1`