Advertisements
Advertisements
प्रश्न
if y = axn+2 + bx-n-1, then `x^2(d^2y)/(dx^2)` is ______.
विकल्प
n(n - 1)y
(n + 1)(n + 2)y
ny
n2y
MCQ
रिक्त स्थान भरें
उत्तर
if y = axn+2 + bx-n-1, then `x^2(d^2y)/(dx^2)` is (n + 1)(n + 2)y.
Explanation:
y = axn+2 + bx-n-1 ....(i)
`thereforedy/dx=(n+2)ax^(n+1)-(n+1)bx^(-n-2)`
`therefore(d^2y)/(dx^2)=(n+2)(n+1)ax^n+(n+1)(n+2)bx^(-n-3)`
`=>(d^2y)/(dx^2)=((n+2)(n+1))/x^2(ax^(n+2)+bx^(-n-1))`
`=>x^2(d^2y)/dx^2=(n+1)(n+2)y` .....[From (i)]
shaalaa.com
Higher Order Derivatives
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?