Advertisements
Advertisements
प्रश्न
If y = sin(log x), then show that x2y2 + xy1 + y = 0.
उत्तर
y = sin(log x)
y1 = cos(log x) `"d"/"dx"` (log x)
y1 = cos(log x) . `1/x`
∴ xy1 = cos(log x)
Differentiating both sides with respect to x, we get
xy2 + y1(1) = -sin(log x) . \[\frac{1}{x}\]
⇒ x[xy2 + y1] = -sin(log x)
⇒ x2y2 + xy1 = -y
⇒ x2y2 + xy1 + y = 0
APPEARS IN
संबंधित प्रश्न
Differentiate the following with respect to x.
x3 ex
Differentiate the following with respect to x.
ex sin x
Differentiate the following with respect to x.
ex (x + log x)
Differentiate the following with respect to x.
sin2 x
Differentiate the following with respect to x.
`sqrt(1 + x^2)`
If `xsqrt(1 + y) + ysqrt(1 + x)` = 0 and x ≠ y, then prove that `"dy"/"dx" = - 1/(x + 1)^2`
If 4x + 3y = log(4x – 3y), then find `"dy"/"dx"`
Differentiate the following with respect to x.
`sqrt(((x - 1)(x - 2))/((x - 3)(x^2 + x + 1)))`
If xm . yn = (x + y)m+n, then show that `"dy"/"dx" = y/x`
Find `"dy"/"dx"` of the following function:
x = a cos3θ, y = a sin3θ