Advertisements
Advertisements
प्रश्न
If the zeroes of the polynomial x3 – 3x2 + x + 1 are a – b, a, a + b, find a and b
उत्तर १
Since, (a - b), a, (a + b) are the zeroes of the polynomial x3 – 3x2 + x + 1.
Therefore, sum of the zeroes = (a - b) + a + (a + b) = -(-3)/1 = 3
⇒ 3a = 3 ⇒ a =1
∴ Sum of the products of is zeroes taken two at a time = a(a - b) + a(a + b) + (a + b) (a - b) =1/1 = 1
a2 - ab + a2 + ab + a2 - b2 = 1
⇒ 3a2 - b2 =1
Putting the value of a,
⇒ 3(1)2 - b2 = 1
⇒ 3 - b2 = 1
⇒ b2 = 2
⇒ b = ±`sqrt2`
Hence, a = 1 and b = ± `sqrt2`
उत्तर २
p(x) = x3 - 3x2 + x + 1
Zeroes are a - b, a + a + b
Comparing the given polynomial with px3 + qx2 + rx + 1, we obtain
p = 1, q = - 3, r = 1, t = 1
Sum of zeroes = a - b + a + a +b
`(-q)/p = 3a`
`(-(-3))/1 =3a`
3 = 3a
a = 1
The zeroes are 1-b, 1, 1+b
Multiplication of zeroes = 1(1-b)(1+b)
`(-t)/p=1-b^2`
`(-1)/1 = 1 - b^2`
1- b2 = -1
1 + 1 = b2
b = ±`sqrt2`
Hence a = 1 and b = `sqrt2` or - `sqrt2`
APPEARS IN
संबंधित प्रश्न
if α and β are the zeros of ax2 + bx + c, a ≠ 0 then verify the relation between zeros and its cofficients
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients:
4s2 – 4s + 1
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/alpha+1/beta-2alphabeta`
If α and β are the zeros of the quadratic polynomial f(x) = 6x2 + x − 2, find the value of `alpha/beta+beta/alpha`.
If a and 3 are the zeros of the quadratic polynomial f(x) = x2 + x − 2, find the value of `1/alpha-1/beta`.
Find a cubic polynomial with the sum of its zeroes, sum of the products of its zeroes taken two at a time and the product of its zeroes as 5, -2 and -24 respectively.
If one of the zeroes of the quadratic polynomial (k – 1)x2 + k x + 1 is –3, then the value of k is ______.
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`4x^2 + 5sqrt(2)x - 3`
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`-2sqrt(3), -9`
Find the sum and product of the roots of the quadratic equation 2x2 – 9x + 4 = 0.