Advertisements
Advertisements
प्रश्न
In a cyclic quadrilateral ABCD, ∠A = (6x + 10)°, ∠B = (5x)°, ∠C = (x + y)° and ∠D = (3y – 10)°. What will be the four angles of the cyclic quadrilateral?
उत्तर
Given: ∠A = (6x + 10)°, ∠B = (5x)°, ∠C = (x + y)° and ∠D = (3y – 10)°
The sum of opposite angles in a cyclic quadrilateral equals 180°.
∴ ∠A + ∠C = 180° and ∠B + ∠D = 180°
Now, (6x + 10)° + (x + y)° = 180°
⇒ 7x + y = 180° – 10°
⇒ 7x + y = 170° ......(i)
Also, (5x)° + (3y – 10)° = 180°
⇒ 5x + 3y = 180° + 10°
⇒ 5x + 3y = 190° ......(ii)
Multiplying equation (i) by 3, we get
21x + 3y = 510° .....(iii)
Now, subtracting equation (ii) from (iii), we get
21x + 3y = 510°
5x + 3y = 190°
– – –
16x = 320°
⇒ x = 20°
Substituting the value of x in equation (ii), we get
5(20°) + 3y = 190°
100° + 3y = 190°
3y = 190° – 100° = 90°
y = 30°
So, x = 20° and y = 30°
Thus, ∠A = (6x + 10)° = (6 × 20 + 10)° = 130°
∠B = (5x)° = (5 × 20)° = 100°
∠C = (x + y)° = (20° + 30°) = 50°
∠D = (3y – 10)° = (3 × 30 – 10)° = 80°
Hence, the angles are 130°, 100°, 50° and 80°.