Advertisements
Advertisements
प्रश्न
In ∆ ABC, ∠B = 2 ∠C and the bisector of angle B meets CA at point D. Prove that:
(i) ∆ ABC and ∆ ABD are similar,
(ii) DC: AD = BC: AB
योग
उत्तर
(i) Since, BD is the bisector of angle B,
∠ABD = ∠DBC
Also, given ∠B =2∠C
∴∠ABD = ∠DBC = ∠ACB .... (1)
In ∆ ABC and ∆ ABD,
∠BAC = ∠DAB (Common)
∠ACB = ∠ABD (Using (1))
∴∆ABC ~ ∆ADB (By AA similarity)
(ii) Since, triangles ABC and ADB are similar,
`∴ ("BC")/("BD")=("AB")/("AD")`
`("BC")/("AB")=("BD")/("AD")`
`("BC")/("AB")=("DC")/("AD") (∠"DBC" = ∠"'DCB" ⇒ "DC" = "BD")`
`"BC" : "AB" = "DC" : "AD"`
shaalaa.com
Axioms of Similarity of Triangles
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?