Advertisements
Advertisements
प्रश्न
In circular motion, assuming `bar v = bar w xx bar r` , obtain an expression for the resultant acceleration of a particle in terms of tangential and radial component.
उत्तर
Acceleration of a particle,
`a=lim_(deltat->0) ((delta v)/(delta t)) ... delta t ->0; delta t ne 0`
`therefore a=(dv)/(dt)`
`But, v = r omega`
`therefore a=d/dt (r omega)`
`=r (d omega)/dt + omega (dr)/(dt)`
`because "r is constant"`
`(dr)/(dt) = 0`
`therefore a=r (d omega)/(dt)`
`because (d omega)/(dt) = alpha`
`alpha = r alpha`
Given that:
`bar "v"= bar omega xx bar "r"`
Differentiating w.r.t. time
`(d bar v)/(dt)=d/dt (bar omega xx bar "r")`
`(d barv)/(dt) = (d baromega)/(dt) xx barr + baromega xx (d barr)/(dt)`
`(d barv)/(dt) = baralpha xx barr + baromega xx barv`
`therefore bara = bara_T + bara_r`
Where,
a = Linear acceleration
aT = Tangential component of linear acceleration
ar = Radial component of linear acceleration