Advertisements
Advertisements
प्रश्न
In each of the following determine the; value of k for which the given value is a solution of the equation:
3x2 + 2kx - 3 = 0; x = `-(1)/(2)`
उत्तर
Since, x = `-(1)/(2)` is a root of the given equation 3x2 + 2kx - 3 = 0
Therefore,
`3(-1/2)^2 + 2k (-1/2)-3` = 0
⇒ `3 xx (1)/(4) - k - 3` = 0
⇒ k = `(3)/(4) - 3`
= `-(9)/(4)`
⇒ k = `-(9)/(4)`.
APPEARS IN
संबंधित प्रश्न
If x=−`1/2`, is a solution of the quadratic equation 3x2+2kx−3=0, find the value of k
Find the value of p for which the quadratic equation (2p + 1)x2 − (7p + 2)x + (7p − 3) = 0 has equal roots. Also find these roots.
For what value of m, are the roots of the equation (3m + 1)x2 + (11 + m) x + 9 = 0 equal?
Is it possible to design a rectangular park of perimeter 80 and area 400 m2? If so find its length and breadth.
Find the values of k for which the roots are real and equal in each of the following equation:
`kx^2-2sqrt5x+4=0`
Solve the following quadratic equation using formula method only :
x2 +10x- 8= 0
Find the value (s) of k for which each of the following quadratic equation has equal roots : kx2 – 4x – 5 = 0
Compare the quadratic equation `x^2 + 9sqrt(3)x + 24 = 0` to ax2 + bx + c = 0 and find the value of discriminant and hence write the nature of the roots.
For the roots of the equation a – bx – x2 = 0; (a > 0, b > 0), which statement is true?
The value of 'a' for which the sum of the squares of the roots of 2x2 – 2(a – 2)x – a – 1 = 0 is least is ______.