हिंदी

In a Race, the Odds in Favour of Horses A, B, C, D Are 1 : 3, 1 : 4, 1 : 5 and 1 : 6 Respectively. Find Probability that One of Them Wins the Race. - Mathematics

Advertisements
Advertisements

प्रश्न

In a race, the odds in favour of horses ABCD are 1 : 3, 1 : 4, 1 : 5 and 1 : 6 respectively. Find probability that one of them wins the race.

उत्तर

Let  Q, R, S and T be the events where horses A, B, C and D win the race, respectively.
Then,

\[P(Q) = \frac{1}{4}, P(R) = \frac{1}{5}, P\left( S \right) = \frac{1}{6} \text{ and }  P\left( T \right) = \frac{1}{7}\]

Since only one horse can win the race, Q, R, S and T are mutually exclusive events.
∴ Required probability = P (Q ∪ R ∪ S ∪ T)
                                      = P(Q) + P(R) + P(S) + P(T)

                                      = \[\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}\]

                                      = \[\frac{319}{420}\]

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Probability - Exercise 33.4 [पृष्ठ ६८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 33 Probability
Exercise 33.4 | Q 18 | पृष्ठ ६८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A die is rolled. Let E be the event “die shows 4” and F be the event “die shows even number”. Are E and F mutually exclusive?


Three coins are tossed. Describe two events which are mutually exclusive.


Three coins are tossed. Describe three events which are mutually exclusive and exhaustive.


Three coins are tossed. Describe two events which are mutually exclusive but not exhaustive.


Three coins are tossed. Describe three events which are mutually exclusive but not exhaustive.


Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5

State true or false: (give reason for your answer).

A = B'


Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5

State true or false: (give reason for your answer)

 A and C are mutually exclusive


Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5

State true or false: (give reason for your answer)

A and B' are mutually exclusive


Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5

State true or false: (give reason for your answer)

A' , B' ,C are mutually exclusive and exhaustive.


Given P(A) = `3/5` and P(B) = `1/5`. Find P(A or B), if A and B are mutually exclusive events.


Events E and F are such that P(not E or not F) = 0.25, State whether E and F are mutually exclusive.


Three coins are tossed. Describe.  two events A and B which are mutually exclusive.


Three coins are tossed. Describe. two events A and B which are not mutually exclusive.


Three coins are tossed. Describe.

(iv) two events A and B which are mutually exclusive but not exhaustive.

 

If A and B be mutually exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find 
P (A ∩\[\bar{ B } \] ).

 

A box contains 10 white, 6 red and 10 black balls. A ball is drawn at random from the box. What is the probability that the ball drawn is either white or red?


The probability that a person will travel by plane is 3/5 and that he will travel by trains is 1/4. What is the probability that he (she) will travel by plane or train?


If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(\[\bar{ A } \] ∩  \[\bar{B} \] ) 

 


If \[\frac{(1 - 3p)}{2}, \frac{(1 + 4p)}{3}, \frac{(1 + p)}{6}\] are the probabilities of three mutually exclusive and exhaustive events, then the set of all values of p is

 


If ABC are three mutually exclusive and exhaustive events of an experiment such that 3 P(A) = 2 P(B) = P(C), then P(A) is equal to 


An experiment has four possible outcomes A, B, C and D, that are mutually exclusive. Explain why the following assignments of probabilities are not permissible:

P(A) = 0.12, P(B) = 0.63, P(C) = 0.45, P(D) = – 0.20


If A, B, C are three mutually exclusive and exhaustive events of an experiment such that 3P(A) = 2P(B) = P(C), then P(A) is equal to ______.


If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(A′)


If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(B′)


If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(A ∪ B)


If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(A ∩ B)


One of the four persons John, Rita, Aslam or Gurpreet will be promoted next month. Consequently the sample space consists of four elementary outcomes S = {John promoted, Rita promoted, Aslam promoted, Gurpreet promoted} You are told that the chances of John’s promotion is same as that of Gurpreet, Rita’s chances of promotion are twice as likely as Johns. Aslam’s chances are four times that of John.
Determine P(John promoted)
P(Rita promoted)
P(Aslam promoted)
P(Gurpreet promoted)


Let E1, E2, E3 be three mutually exclusive events such that P(E1) = `(2 + 3p)/6`, P(E2) = `(2 - p)/8` and P(E3) = `(1 - p)/2`. If the maximum and minimum values of p are p1 and p2, then (p1 + p2) is equal to ______.


If the events A and B are mutually exclusive events such that P(A) = `(3x + 1)/3` and P(B) = `(1 - x)/4`, then the set of possible values of x lies in the interval ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×