हिंदी

In a Simultaneous Throw of a Pair of Dice, Find the Probability of Getting: Neither 9 Nor 11 as the Sum of the Numbers on the Faces - Mathematics

Advertisements
Advertisements

प्रश्न

In a simultaneous throw of a  pair of dice, find the probability of getting: 

 neither 9 nor 11 as the sum of the numbers on the faces

उत्तर

\[\text{ When a pair of dice is thrown simultaneously, the sample space will be as follow }: \]
\[S = \left\{ \left( 1, 1 \right), \left( 1, 2 \right), \left( 1, 3 \right), \left( 1, 4 \right), \cdots\left( 6, 5 \right), \left( 6, 6 \right) \right\}\]
\[\text{ Hence, the total number of outcomes is 36 } . \]

\[\text{ Let A be the event of getting pairs whose sum is 9 or 11 } . \]
\[\text{ The pairs whose sum is 9 are  }\left( 3, 6 \right), \left( 4, 5 \right), \left( 5, 4 \right) \text{ and } \left( 6, 3 \right) . \]
\[\text{ And, the pairs whose sum is 11 are } \left( 5, 6 \right) \text{ and } \left( 6, 5 \right) . \]
\[\text{ Hence, the number of favourable outcomes is 6 } . \]
\[ \therefore P\left( A \right) = \frac{\text{ Number of favourable outcomes }}{\text{ Total number of outcomes }} = \frac{6}{36} = \frac{1}{6}\]
\[ \therefore P\left( \text{ sum of the pairs with neither 9 nor  }11 \right) = 1 - P\left( \text{ sum of the pairs having 9 or 11 } \right) = 1 - \frac{1}{6} = \frac{5}{6}\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 26: Data Handling-IV (Probability) - Exercise 26.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 8
अध्याय 26 Data Handling-IV (Probability)
Exercise 26.1 | Q 3.08 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×