Advertisements
Advertisements
प्रश्न
In the following figure, DE || BC, then:
- If DE = 4 cm, BC = 8 cm, A(ΔADE) = 25 cm2, find A(ΔABC).
- If DE : BC = 3 : 5, then find A(ΔADE) : A(`square`DBCE).
उत्तर
In ΔABC and ΔADE
∠ABC ≅ ∠ADE ...(DE || BC, Corresponding angles)
∠BAC ≅ ∠DAE ...(Common angles)
∴ ΔABC ∼ ΔADE ...(AA Test of similarity)
(i) Given: DE = 4 cm, BC = 8 cm, A(△ADE) = 25 cm2
∴ By theorem of areas of similar triangles
`(A(ΔABC))/(A(ΔADE)) = (BC^2)/(DE^2)`
∴ `(A(ΔABC))/25 = 8^2/4^2`
∴ A(ΔABC) = `(25 xx 64)/16`
∴ A(ΔABC) = 100 cm2
(ii) Given: `(DE)/(BC) = 3/5`
∴ By theorem of areas of similar triangles
`(A(ΔADE))/(A(ΔABC)) = (DE^2)/(BC^2)`
∴ `(A(ΔADE))/(A(ΔABC)) = 3^2/5^2`
∴ `(A(ΔADE))/(A(ΔABC)) = 9/25`
Let A(ΔADE) = 9x then A(ΔABC) = 25x.
Since A(`square`DBCE) = A(ΔABC) − A(ΔADE)
∴ A(`square`DBCE) = 25x − 9x
∴ A(`square`DBCE) = 16x
Now, `(A(ΔADE))/(A(squareDBCE)) = (9x)/(16x)`
∴ `(A(ΔADE))/(A(squareDBCE)) = 9/16`
∴ A(△ADE) : A(`square`DBCE) = 9 : 16